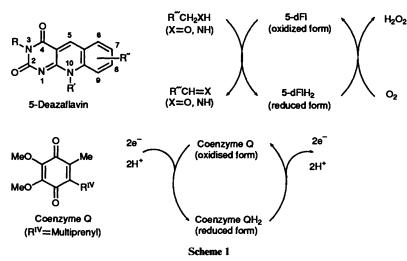
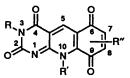
## Synthesis and Catalytic Properties of 5-Deazaflavo-6,9-quinones

Tetsutaro Kimachi, Yoshinori Tamura, Kiyoshi Bessho and Fumio Yoneda\* Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku 606, Kyoto, Japan


Novel 5-deazaflavo-6,9-quinones, which can be regarded as chemical hybrids of 5-deazaflavin and coenzyme Q, were designed and synthesized in a search for more powerful autorecycling redox catalysts for amine oxidation. 9-Methoxy-5-deazaflavins, which were synthesized from 6-aminouracils and 2,3-dimethoxybenzaldehydes, were exposed to oxidation with cerium ammonium nitrate in aqueous acetonitrile to give 5-deazaflavo-6,9-quinones. While 8-unsubstituted 5-deazaflavo-6,9-quinones thus obtained were unstable in the amine oxidation, 8-methoxy-5-deazaflavo-6,9-quinones were rather stable under the same conditions and showed an autorecycling amine-oxidizing ability.

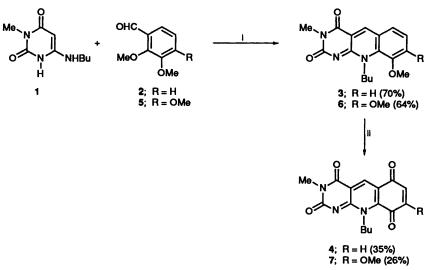
5-Deazaflavin, in which N-5 of flavin is replaced by CH, has been extensively studied as a model system in investigations of the mechanism of flavin-catalysed reactions.<sup>1-3</sup> Syntheses of 5-deazaflavins and their biomimetic reactions have been accomplished.<sup>4-6</sup> For example, 5-deazaflavins showed strong autorecycling redox power in model alcohol and amine dehydrogenase oxidations.<sup>7.8</sup>

In the course of the oxidation by 5-deazaflavin, the 5-deazaflavin plays a role as an autorecycling catalyst; the substrate is oxidized and 5-deazaflavin (5-dFl) is reduced to the 1,5-dihydro-5-deazaflavin (5-dFlH<sub>2</sub>), which is easily reoxidized by air to the original 5-dFl and it takes part in another cycle of amine oxidation (Scheme 1).

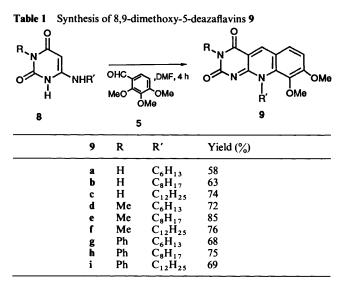

dimethoxybenzaldehyde 2 in dimethylformamide (DMF) gave 10-butyl-9-methoxy-3-methyl-5-deazaflavin 3 in moderate yield (Scheme 2). In most cases, conversion of the 9-methoxy-5deazaflavin 3 into the corresponding 5-deazaflavo-6,9-quinone 4 by oxidation proved difficult, because undesired oxidized products were obtained, but succeeded only when cerium(IV) ammonium nitrate (CAN) was used as the oxidizing agent, even though it gave a low yield. Proton NMR spectra of 5deazaflavo-6,9-quinones 4 showed a reasonable change in both chemical shift and coupling pattern of the C-7 and -8 protons of the 5-deazaflavin skeleton compared with those of 5-deazaflavin itself.

First, the oxidation of benzylamine with 10-butyl-3-methyl-




In the meantime, coenzyme ubiquinone (Coenzyme Q), which is a 1,4-benzoquinone derivative, is playing an important role as an electron carrier in the electron-transport system of the respiratory chain.

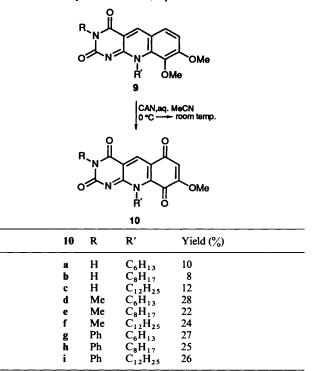
In order to develop a newer and more powerful autorecycling catalyst than 5-deazaflavin, we planned to synthesize a novel type of 5-deazaflavo-6,9-quinone which is considered to be a chemical hybrid of 5-deazaflavin and coenzyme Q.




Condensation of 6-butylamino-3-methyluracil 1 and 2,3-

5-deazaflavo-6,9-quinone 4 was tried under the conditions described in the Experimental section. However, it is difficult to discuss the oxidizing power of the flavoquinones 4 because they degrade under the conditions used. The occurrence of the degradation seemed to be because of nucleophilic attack of the amino function at C-8 of quinones 4, which occurred predominantly. In order to prepare a more stable compound, another 5-deazaflavoquinone derivative having a substituent at C-8 was synthesized starting from the uracil 1 and 2,3,4trimethoxybenzaldehyde 5. 10-Butyl-8,9-dimethoxy-3-methyl-5-deazaflavin 6 thus obtained was also converted into the corresponding 5-deazaflavo-6,9-quinone, compound 7, by CAN. The oxidation of benzylamine with compound 7 was attempted under the same conditions and it was found that the reaction was facilitated without decomposition to give benzaldehyde in 120% yield based on quinone 7. To examine the substituent effect at the C-3 and -10 positions of 5-deazaflavo-

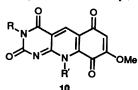



Scheme 2 Reagents and conditions: i, DMF, reflux, 4 h; ii, CAN (5 mol equiv.), aq. MeCN, 0 °C→room temp.



6,9-quinones on the amine oxidation, and especially to investigate the effect of lipophilicity on the power of oxidation, several 5-deazaflavo-6,9-quinone derivatives **10** having various side-chains at C-3 and -10 were synthesized (Tables 1 and 2).

Table 3 shows the results of the oxidation of benzylamine with compounds 10. For comparative purposes, 5-deazaflavin, 3-methyl-10-hexyl-8,9-dimethyl-5-deazaflavin, and 1,4-benzoquinone derivatives were used to oxidize the amine under the same conditions. The relationship between the oxidizing power and the side-chains at C-3 and -10 was vague, but it was interesting that all of the 5-deazaflavo-6,9-quinones have been found to have stronger oxidizing power than the 5-deazaflavins used before<sup>8</sup> and to show autorecycling oxidizing abilities (Table 3).

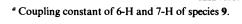

These facts suggest that 5-deazaflavo-6,9-quinones have gained their oxidizing power from the 5-deazaflavin moiety, and their smooth electron-transferring ability from the 1,4-benzoquinone moiety. A proposed mechanism for the autorecycling amine oxidation by 5-deazaflavo-6,9-quinones is illustrated as follows. Firstly, the usual hydride abstraction or an equivalent reaction from the amine would occur at the 5-position of the 5deazaflavo-6,9-quinone, followed by smooth electron transfer to give a 6,9-dihydroxy-5-deazaflavin 14 (which has not yet been isolated) via presumable intermediates 12 and 13, and finally the diol 14 would be reoxidized by air to the starting 5-deazaflavo-6,9-quinone 11 (Scheme 3). Table 2 8-Methoxy-5-deazaflavo-6,9-quinones 10



## Experimental

All materials not explicitly discussed were purchased from Wakenyaku Co., Nacalai Tesque Co., and Aldrich Chemical Co. <sup>1</sup>H NMR spectra were obtained with a JEOL JNM-FX-200 Fourier transform spectrometer, and J values are given in Hz. IR spectra were measured with a Shimadzu IR 400 spectrometer. M.p.s were taken using a Yanagimoto micromelting point apparatus and are uncorrected. Gas liquid chromatography (GLC) was performed on a Shimadzu GC-7AG with a glass column (2.0 m) packed with 5% free fatty acid phase (FFAP).

Synthesis of 10-Butyl-9-methoxy-3-methyl-5-deazaflavin 3.— A suspension of 6-butylamino-3-methyluracil 1 (800 mg, 4.2 mmol) and 2,3-dimethoxybenzaldehyde 2 (940 mg, 1.4 mol equiv.) in DMF ( $2 \text{ cm}^3$ ) was heated for 4 h. Crystals formed after the mixture had cooled were filtered off and recrystallized from ethanol to give *compound* 3 (900 mg, 70%), m.p. > 300 °C; **Table 3** Oxidation of benzylamine with 5-deazaflavo-6,9-quinones and other compounds (conditions; 50% aq. benzylamine solution, ambient air. Reaction time; 40 h. Reaction temp.; 60 °C).



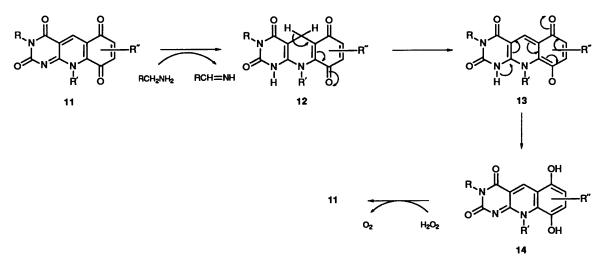

|                 |    |                                 | 10            |                    |                           |
|-----------------|----|---------------------------------|---------------|--------------------|---------------------------|
| Compounds<br>10 | R  | R'                              | Yield<br>(%)" | Other<br>compounds | Yield<br>(%) <sup>a</sup> |
| 8               | н  | C <sub>6</sub> H <sub>13</sub>  | 144           | 9d                 | 11                        |
| b               | Н  | $C_8H_{17}$                     | 132           |                    |                           |
| c               | Н  | $C_{12}H_{25}$                  | 104           | 1,4-Benzoquinone   | 55                        |
| d               | Me | $C_6H_{13}$                     | 183           |                    |                           |
| e               | Me | $C_8 H_{17}$                    | 606           | 1,4-Naphthoquinone | 81                        |
| f               | Me | C <sub>12</sub> H <sub>25</sub> | 262           |                    |                           |
| g               | Ph | $C_6H_{13}$                     | 247           | None               | 0                         |
| ň               | Ph | $C_{8}H_{17}$                   | 776           |                    |                           |
| i               | Ph | $C_{12}H_{25}$                  | 330           |                    |                           |

<sup>a</sup> Based on initial amount of substrate (compounds 10 and other compounds).

Table 4

|          |    | R'                              |           | $\delta_{\rm H}({\rm CDCl}_3)$ |                              |      |
|----------|----|---------------------------------|-----------|--------------------------------|------------------------------|------|
| Compound | R  |                                 | M.p. (°C) | 5-H                            | 6-H                          | 7-H  |
| 9a       | Н  | C <sub>6</sub> H <sub>13</sub>  | 243       | 8.77                           | 7.20<br>(J 9.0) <sup>a</sup> | 7.68 |
| 9b       | Н  | C <sub>8</sub> H <sub>17</sub>  | 232       | 8.70                           | 7.18<br>(J 9.0) <sup>e</sup> | 7.66 |
| 9c       | Н  | $C_{12}H_{25}$                  | 225       | 8.71                           | 7.18<br>(J 8.9)*             | 7.67 |
| 9d       | Me | C <sub>6</sub> H <sub>13</sub>  | 221       | 8.73                           |                              | 7.65 |
| 9e       | Me | C <sub>8</sub> H <sub>17</sub>  | 216       | 8.73                           | 7.17<br>(J 9.0)ª             | 7.63 |
| 9f       | Me | $C_{12}H_{25}$                  | 201       | 8.73                           | 7.17<br>(J 8.9) <sup>a</sup> | 7.65 |
| 9g       | Ph | C <sub>6</sub> H <sub>13</sub>  | 248       | 8.76                           | 7.18<br>(J 8.9)*             | 7.66 |
| 9h       | Ph | C <sub>8</sub> H <sub>17</sub>  | 199       | 8.77                           | 7.20<br>(J 9.0) <sup>a</sup> | 7.68 |
| 9i       | Ph | C <sub>12</sub> H <sub>25</sub> | 182       | 8.77                           | 7.18<br>(J 8.9) <i>ª</i>     | 7.65 |




|          |                                                                                    | Anal. ca | alc./Four | id (%) |
|----------|------------------------------------------------------------------------------------|----------|-----------|--------|
| Compound | Formula                                                                            | C        | Н         | N      |
| 9a       | C <sub>19</sub> H <sub>23</sub> N <sub>3</sub> O <sub>4</sub>                      | 63.9     | 6.4       | 11.8   |
|          |                                                                                    | 63.6     | 6.4       | 11.5   |
| 9b       | $C_{21}H_{27}N_{3}O_{4}$                                                           | 65.45    | 7.0       | 10.9   |
|          |                                                                                    | 65.7     | 7.1       | 10.9   |
| 9c       | C <sub>25</sub> H <sub>35</sub> N <sub>3</sub> O <sub>4</sub>                      | 70.6     | 8.2       | 9.9    |
|          |                                                                                    | 70.3     | 8.3       | 9.7:   |
| 9d       | C <sub>20</sub> H <sub>25</sub> N <sub>3</sub> O <sub>4</sub> •1/2H <sub>2</sub> O | 63.15    | 6.8       | 11.05  |
|          |                                                                                    | 63.6     | 6.7       | 11.0   |
| 9e       | $C_{22}H_{29}N_{3}O_{4}$                                                           | 66.2     | 7.3       | 10.5   |
|          |                                                                                    | 66.1     | 7.2       | 10.5   |
| 9f       | C <sub>26</sub> H <sub>37</sub> N <sub>3</sub> O <sub>4</sub>                      | 68.6     | 8.1       | 9.2    |
|          |                                                                                    | 68.35    | 8.2       | 9.2    |
| 9g       | $C_{25}H_{27}N_{3}O_{4}$                                                           | 69.3     | 6.2       | 9.7    |
| -        |                                                                                    | 69.4     | 6.3       | 9.7    |
| 9h       | $C_{27}H_{31}N_{3}O_{4}$                                                           | 70.3     | 6.7       | 9.1    |
|          |                                                                                    | 70.3     | 6.7       | 9.1    |
| 9i       | C <sub>31</sub> H <sub>39</sub> N <sub>3</sub> O <sub>4</sub>                      | 71.95    | 7.5       | 8.1    |
|          |                                                                                    | 72.0     | 7.7       | 8.1    |

| Т | able | 6 |
|---|------|---|
|   |      |   |

|           |    | R'                              | $\delta_{\rm H}({\rm CDCl}_3)$ |      |  |
|-----------|----|---------------------------------|--------------------------------|------|--|
| Compounds | R  |                                 | 5-H                            | 7-H  |  |
| 10a       | н  | C <sub>6</sub> H <sub>13</sub>  | 8.95                           | 6.18 |  |
| 10b       | Н  | $C_{8}H_{17}$                   | 8.94                           | 6.18 |  |
| 10c       | Н  | C <sub>12</sub> H <sub>25</sub> | 8.94                           | 6.19 |  |
| 10d       | Me | C <sub>6</sub> H <sub>1</sub>   | 9.09                           | 6.21 |  |
| 10e       | Me | $C_{8}H_{17}$                   | 9.09                           | 6.21 |  |
| 10f       | Me | C12H25                          | 9.10                           | 6.22 |  |
| 10g       | Ph | $C_6H_{13}$                     | 9.10                           | 6.20 |  |
| 10h       | Ph | $C_8H_{17}$                     | 9.12                           | 6.21 |  |
| 10i       | Ph | $C_{12}\dot{H}_{25}$            | 9.12                           | 6.21 |  |

 $\delta_{\rm H}(200 \text{ MHz}; \text{CDCl}_3) 8.83 (1 \text{ H}, \text{ s}), 7.48 (1 \text{ H}, \text{ dd}, J 2.2 \text{ and} 7.3), 7.41 (1 \text{ H}, \text{dd}, J 7.3 \text{ and 7.6}), 7.34 (1 \text{ H}, \text{dd}, J 2.2 \text{ and 7.6}), 4.03 (3 \text{ H}, \text{ s}), 3.47 (3 \text{ H}, \text{ s}), 0.98 (3 \text{ H}, \text{ t}, J 7.3) (Found: C, 63.3; \text{ H}, 5.9; \text{ N}, 13.1. \text{ C}_{17}\text{H}_{19}\text{N}_3\text{O}_3 \cdot 1/2\text{H}_2\text{O}$  requires C, 63.35; H, 6.2; N, 13.0%).

10-Butyl-3-methyl-5-deazaflavo-6,9-quinone 4.—To a suspension of the 9-methoxy-5-deazaflavin 3 (100 mg) in MeCN  $(5 \text{ cm}^3)$  at 0 °C was added slowly aqueous CAN (2.2 g in 5 cm<sup>3</sup>).



Scheme 3 Proposed redox mechanism for 5-deazaflavo-6,9-quinones

Table 7

|           | Formula                                                                            | M.p. (°C) | Anal. calc./Found (%) |                     | nd (%)                |
|-----------|------------------------------------------------------------------------------------|-----------|-----------------------|---------------------|-----------------------|
| Compounds |                                                                                    |           | c                     | Н                   | N                     |
| 10a       | C <sub>18</sub> H <sub>19</sub> N <sub>3</sub> O <sub>5</sub>                      | 170       | 60.5                  | 5.3                 | 11.8                  |
| 10b       | C <sub>20</sub> H <sub>23</sub> N <sub>3</sub> O <sub>5</sub>                      | 162       | 60.25<br>62.3<br>62.3 | 5.2<br>6.0<br>5.95  | 12.0<br>10.9<br>10.65 |
| 10c       | $C_{24}H_{31}N_{3}O_{5}$                                                           | 184       | 65.3                  | 7.0                 | 9.5                   |
| 10d       | $C_{19}H_{21}N_{3}O_{5}\cdot 1/2H_{2}O$                                            | 210       | 65.3<br>60.0          | 7.0<br>5.8          | 9.4<br>11.05          |
| 10e       | C <sub>21</sub> H <sub>25</sub> N <sub>3</sub> O <sub>5</sub>                      | 165       | 60.3<br>63.2          | 5.7<br>6.3          | 11.1<br>10.5          |
| 10f       | C <sub>25</sub> H <sub>33</sub> N <sub>3</sub> O <sub>5</sub>                      | 192       | 62.8<br>65.9          | 6.4<br>7.25         | 10.2<br>9.2           |
| 10g       | C <sub>24</sub> H <sub>23</sub> N <sub>3</sub> O <sub>5</sub>                      | 180       | 65.4<br>66.5          | 7.2<br>5.3          | 8.9<br>9.7            |
| 10h       | C <sub>26</sub> H <sub>27</sub> N <sub>3</sub> O <sub>5</sub> ·1/2H <sub>2</sub> O | 194       | 66.2<br>66.4          | 5.4<br>5.95         | 9.7<br>8.9            |
| 10i       | C <sub>30</sub> H <sub>35</sub> N <sub>3</sub> O <sub>5</sub>                      | 185       | 66.5<br>69.6<br>69.4  | 5.9<br>6.75<br>6.75 | 9.0<br>8.0<br>8.0     |

The reaction mixture was stirred at room temperature for 2 h and then was extracted with  $CH_2Cl_2$ , and the extract was dried over  $Na_2SO_4$  and evaporated under reduced pressure without heating. The residue was purified by silica gel column chromatography to give *compound* 4 (35%), m.p. 200 °C (decomp.);  $\delta_H(200 \text{ MHz}; \text{CDCl}_3) 9.09 (1 \text{ H}, \text{ s})$ , 7.06 (2 H, s), 5.0 (2 H, m), 3.45 (3 H, s), 1.58 (4 H, m) and 1.01 (3 H, t, J 7.2) (Found: C, 61.5; H, 4.9; N, 13.3.  $C_{16}H_{15}N_3O_4$  requires C, 61.3; H, 4.8; N, 13.4%).

Synthesis of 10-Butyl-8,9-dimethoxy-3-methyl-5-deazaflavin 6.—A suspension of 6-butylamino-3-methyluracil 1 (900 mg, 4.6 mmol) and 2,3,4-trimethoxybenzaldehyde 5 (1.26 g, 1.4 mol equiv.) in DMF (2 cm<sup>3</sup>) was heated for 4 h. Crystals obtained after the mixture had cooled were filtered off and recrystallized from EtOH to give compound 6 (1.0 g, 64%), m.p. > 300 °C;  $\delta_{\rm H}(200 \text{ MHz}; \text{ CDCl}_3)$  8.73 (1 H, s), 7.65 (1 H, d, J 8.8), 7.18 (1 H, d, J 8.8), 4.08 (3 H, s), 3.92 (3 H, s), 3.46 (3 H, s) and 0.94 (3 H, t, J 7.3) (Found: C, 62.3; H, 6.2; N, 12.8. C<sub>18</sub>H<sub>21</sub>N<sub>3</sub>O<sub>4</sub> requires C, 62.95; H, 6.2; N, 12.2%).

10-Butyl-8-methoxy-3-methyl-5-deazaflavo-6,9-quinone 7.— To a suspension of the 8,9-dimethoxy-5-deazaflavin 6 (200 mg) in MeCN (10 cm<sup>3</sup>) at 0 °C was slowly added aqueous CAN (3.5 g in 6 cm<sup>3</sup>). The reaction mixture was then stirred at room temperature for 2 h before being extracted with CH<sub>2</sub>Cl<sub>2</sub>, and the extract was dried with Na<sub>2</sub>SO<sub>4</sub> and the solvent was evaporated off under reduced pressure without heating. The residue was purified by silica gel column chromatography (26%),  $\delta_{\rm H}$ (200 MHz; CDCl<sub>3</sub>) 9.12 (1 H, s), 6.21 (1 H, s), 3.96 (3 H, s), 3.46 (3 H, s) and 1.01 (3 H, dd, J 7.5 and 7.1) (Found: C, 58.9; H, 5.1; N, 11.7. C<sub>17</sub>H<sub>17</sub>N<sub>3</sub>O<sub>5</sub>-1/4H<sub>2</sub>O requires C, 58.7; H, 5.0; N, 12.1%).

8,9-Dimethoxy-5-deazaflavins **9a–9i**.—General procedure. A suspension of a 6-aminouracil **8** (5 mmol) and 2,3,4-trimethoxybenzaldehyde 5(5.5 mmol) in DMF (2 cm<sup>3</sup>) was heated for 4 h. The crystalline product was filtered off, and recrystallized from EtOH. Analytical and spectral data are shown in Tables 4 and 5.

General Procedure for 5-Deazaflavo-6,9-quinones **10a-10i** by CAN Oxidation.—To a suspension of a 8,9-dimethoxy-5-deazaflavin **9** (2 mmol) in MeCN (10 cm<sup>3</sup>) at 0 °C was slowly added CAN (5.5 mol equiv. in 6 cm<sup>3</sup>). The reaction mixture was stirred at room temperature overnight before being extracted with  $CH_2Cl_2$ , and the extract was then dried with Na<sub>2</sub>SO<sub>4</sub> and then evaporated under reduced pressure without heating. The residue was purified by silica gel column chromatography [4.0 cm × 20 cm; CHCl<sub>3</sub>-acetone (6:1) as developing solvent]. Analytical and spectral data are shown in Tables 6 and 7.

Oxidation of Benzylamine with 5-Deazaflavo-6,9-quinones 10.—A 5-deazaflavo-6,9-quinone 10 (0.1 mmol) and aq. benzylamine (benzylamine-water 1:1) (5 cm<sup>3</sup>) were mixed at 60 °C for 40 h in air. The reaction mixture was then treated with 5% HCl and extracted with chloroform. Benzaldehyde thus obtained was measured by GLC. The results are shown in Table 3.

## References

- 1 C. Walsh, Acc. Chem. Res., 1986, 19, 216 and references cited therein.
- 2 P. Hemmerich, V. Massey and H. Fenner, FEBS Lett., 1977, 84, 5.
- 3 T. C. Bruice, *Progress in Bioorganic Chemistry*, ed., E. T. Kaiser and F. J. Kézdy, Wiley, New York, 1976, vol. 4, p. 1.
- 4 D. E. O'Brien, L. T. Weinstock and C. C. Cheng, J. Heterocycl. Chem., 1977, 7, 99.
- 5 F. Yoneda, Yakugaku Zasshi, 1984, 104, 97 (Chem. Abstr., 1984, 101, 22609).
- 6 F. Yoneda and K. Tanaka, Med. Res. Rev., 1987, 7, 477 and references cited therein.
- 7 F. Yoneda, Y. Sakuma and Y. Kadokawa, Chem. Lett., 1979, 1467.
- 8 R. Hirayama, M. Kawase, T. Kimachi, K. Tanaka and F. Yoneda, J. Heterocycl. Chem., 1989, 26, 1225.

Paper 2/05714J Received 26th October 1992 Accepted 30th November 1992